Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei Wang, ${ }^{\text {a,b }}$ Hui-Min Liu ${ }^{\text {b }}$ and Wen-Qin Zhang ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
wangweitfj@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.109$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,4-Bis(1-phenyl-1H-tetrazol-5-yIsulfanyl)butane

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{~S}_{2}$, the two 1-phenyl-1 H -tetrazole-5-thiol moieties are located on the same side of the butane-1,4-diyl chain but point in opposite directions.

Received 16 December 2004 Accepted 20 December 2004 Online 8 January 2005

Comment

As a type of ditopic ligand, dithioethers can be used as bridging ligands in the construction of coordination polymers with soft metal ions. A series of flexible or rigid chain-linked dithioethers containing N-heterocyclic moieties have been synthesized and investigated (Sharma et al., 1999; Constable et al., 2002; Bu et al., 2003; Hong et al., 2000; Zheng et al., 2003). Earlier studies reported that several tetrazole derivatives possess diverse pharmacological properties (Juby et al., 1968, 1982), but only a few metal complexes of monosubstituted tetrazole derivatives are known (van den Heuvel et al., 1983; Lyakhov et al., 2003).

(I)

We report here the synthesis and structure of a new tetrazole dithioether, namely the title compound, (I).

In the molecular structure of (I), the two 1-phenyl- 1 H -tetrazole-5-thiol moieties are located on the same side of the butane-1,4-diyl chain, but they point in opposite directions to reduce the steric repulsion between them (Fig. 1); the C7$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1$ and $\mathrm{C} 12-\mathrm{N} 8-\mathrm{C} 13-\mathrm{C} 18$ torsion angles are 52.7 (3) and $-50.2(3)^{\circ}$, respectively. The two tetrazole rings are close to antiparallel, with a dihedral angle of $3.8(1)^{\circ}$ between them, while that between the phenyl rings is $36.0(1)^{\circ}$.

The C8-C $9-\mathrm{C} 10-\mathrm{C} 11$ torsion angle of -178.72 (17) \AA indicates that the butanediyl group is planar. The Csp ${ }^{2}-\mathrm{S}$ bond distances $[C 7-S 1=1.7340(19) \AA$ and $\mathrm{C} 12-$ $\mathrm{S} 2=1.738$ (2) $\AA]$ are significantly shorter than the $\mathrm{Csp} p^{3}-\mathrm{S}$ distances [C8-S1=1.813 (2) \AA and $\mathrm{C} 11-\mathrm{S} 2=1.8042$ (19) \AA], as a result of $\pi-\pi$ conjugation; these distances are similar to those observed in other dithioethers (Zhang et al., 2003; Zheng \& Liu, 2003; Wang, Liu, Zheng \& Zhang, 2004; Wang, Liu \& Zhang, 2004). The other bond distances are within normal ranges (Allen et al., 1987).

Experimental

A solution of 1,4-dibromobutane $(1.08 \mathrm{~g}, 5 \mathrm{mmol})$ in ethanol $(10 \mathrm{ml})$ was added dropwise to a mixture of 1-phenyl-5-thio-1,2,3,4-tetrazole $(1.96 \mathrm{~g}, 11 \mathrm{mmol}), \mathrm{KOH}(0.615 \mathrm{~g}, 11 \mathrm{mmol})$ and ethanol $(10 \mathrm{ml})$. The reaction mixture was then stirred for 24 h at room temperature. The precipitate was filtered off, washed with water and recrystallized from ethanol (yield 74%; m.p. $415-416 \mathrm{~K}$). IR (KBr, $v \mathrm{~cm}^{-1}$): $3068(w)$, 1596 (m), $1450(s), 1461(w), 1388(s), 1274(m), 1238(m), 1093(m)$, 1072 (m), 1014 (m), 975 (w), 843 (w), 763 (s), $688(s), 551$ (m); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): 1.99-2.03 ($m, 4 \mathrm{H}, \mathrm{CH}_{2}-$), 3.40-3.43 ($m, 4 \mathrm{H}$, $\left.\mathrm{S}-\mathrm{CH}_{2}-\right)$, 7.24-7.55 ($\left.\mathrm{m}, 4 \mathrm{H}, \mathrm{Ph}-\right)$. Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{~S}_{2}$: C 52.68, H 4.39, N 27.32%; found: C $52.66, \mathrm{H} 4.35$, N 27.36%. Crystals suitable for single-crystal X-ray analysis were obtained by recrystallization from an acetonitrile solution.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{~S}_{2}$
$M_{r}=410.52$
Monoclinic, $P 2_{1} / c$
$a=9.4630(17) \AA$
$b=12.879(2) \AA$
$c=16.440$ (3) \AA
$\beta=105.802(3)^{\circ}$
$V=1927.9(6) \AA^{3}$
$Z=4$

$D_{x}=1.414 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 2155 reflections
$\theta=2.6-26.2^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.42 \times 0.38 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.882, T_{\text {max }}=0.936$
10993 measured reflections
3955 independent reflections
2953 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 14$
$l=-20 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0551 P)^{2}\right. \\
& \quad+0.5664 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.109$
$S=1.02$
3955 reflections
253 parameters
H-atom parameters constrained

Figure 1
View of the molecule of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X. H., Xie, Y. B., Li, J. R. \& Zhang, R. H. (2003). Inorg. Chem. 42, 74227430.

Constable, E. C., Housecroft, C. E., Kariuki, B. M., Kelly, N. \& Smith, C. B. (2002). Inorg. Chem. Commun. 5, 199-202.

Heuvel, E. J. van den, Franke, P. L., Verschoor, G. C. \& Zuur, A. P. (1983). Acta Cryst. C39, 337-339.
Hong, M. C., Su, W. P., Cao, R., Fujita, M. \& Lu, J. X. (2000). Chem. Eur. J. 6, 427-431.
Juby, P. F., Hudyma, T. W. \& Brown, M. (1968). J. Med. Chem. 11, 111-117.
Juby, P. F., Hudyma, T. W., Brown, M., Essery, J. M. \& Partyka, R. A. (1982). J. Med. Chem. 25, 1145-1150.
Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M. \& Ivashkevich, L. S. (2003). Acta Cryst. E59, m38-m40.
Sharma, C. V. K., Broker, G. A., Huddleston, J. G., Baldwin, J. W., Metzger, R. M. \& Rogers, R. D. (1999). J. Am. Chem. Soc. 121, 1137-1144.

Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SADABS. University of Göttingen, Germany.
Wang, W., Liu, H.-M. \& Zhang W.-Q. (2004). Acta Cryst. E60, o1979-1980.
Wang, W., Liu, H.-M., Zheng, Y. \& Zhang, W.-Q. (2004). Acta Cryst. E60, o1279-1280.
Zhang, W., Liu, H.-M., Li, C.-B. \& Zhang, W.-Q. (2003). Acta Cryst. E59, o26o27.
Zheng, Y., Du, M., Li, J. R., Zhang, R. H. \& Bu, X. H. (2003). Dalton Trans. pp. 1509-1514.
Zheng, Y. \& Liu, H.-B. (2003). Acta Cryst. E59, o34-o35.

